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Abstract—We present Feline Programmable Gate Array: a
robotic cat that can recognize and move toward its owner’s
voice. Feline Programmable Gate Array is implemented on a
RealDigital Urbana development board and leverages an FPGA’s
digital signal processing capability to perform real-time audio
inference. The system features several different applications
of digital systems — audio capture and filtering through I2S
microphones, feature extraction and voice recognition using
Mel-frequency cepstrum coefficients, sound localization using a
time-difference-of-arrival algorithm, Bluetooth communication,
and motor controls. This paper reports the project’s outcomes,
implementation details, and the insights we gained from designing
a large-scale digital system.

Index Terms—digital systems, field programmable gate array,
voice biometrics, sound localization, autonomous systems

I. INTRODUCTION

It is well-known that cats are four-stage finite state machines
wrapped in fur: they can recognize their owner’s voice, move
toward that voice, get distracted by red laser dots, and meow.
As such, this project aimed to build a robotic cat that can
identify and move toward its owner’s voice.

We used a Xilinx Spartan-7 FPGA on a RealDigital Urbana
board to achieve this goal. FPGAs were ideal for this project
because they support a wide range of sensors and outputs
(for example, microphones and Bluetooth) and can process
sensor inputs in real time. This real-time signal processing
capability enabled us to implement capabilities like sound
localization that would otherwise be difficult on the traditional
von Neumann architecture.

By the end of the project, we successfully implemented the
following capabilities, all running on a single robot/FPGA:

• I2S-driven audio capture.
• Finite impulse response (FIR) audio anti-aliasing.
• Bluetooth low energy (BLE) wireless communications.
• Mel-frequency cepstrum coefficient (MFCC) extraction.
• Real-time voice recognition.
• Real-time audio localization.
• Real-time image recognition.
• Autonomous servomotor controls.
• Autonomous DC motor controls.
• Audio playback.

The source code for this project is freely available at https:
//github.com/dolphingarlic/feline-programmable-gate-array

II. SYSTEM ARCHITECTURE

Figs. 1, 2 and 3 shows how the project was structured. First,
audio data would be captured, filtered, and downsampled to
4 kHz. The FFT of the audio data would then be computed,
which would be fed into the sound localizer and biometrics
modules. These two modules would output control signals to
determine whether and how the robot moves.

Fig. 1. The top-level system diagram. Data flows along the arrows, and the
blue dashed arrow represents Bluetooth communication.

Fig. 2. The structure of the localizer module.

Fig. 3. The structure of the biometrics module.

https://github.com/dolphingarlic/feline-programmable-gate-array
https://github.com/dolphingarlic/feline-programmable-gate-array


III. PHYSICAL CONSTRUCTION

The robot consists of:
• A aluminum robot chassis previously designed and fab-

ricated for 2.S007
• Four SPH0645LM4H-B I2S MEMS microphones on a

solderless breadboard
• Two TT Motors and a L298N Dual H-Bridge Motor

Driver to control them
• One TowerPro SG92R micro servo
• A 4 AA Battery Pack to power the motors and the servo
• A Xilinx Spartan-7 FPGA

IV. AUDIO CAPTURE

The audio was captured through four SPH0645LM4H-B
I2S MEMS microphones on Adafruit breakout boards. These
microphones were arranged with a central microphone sur-
rounded by three peripheral microphones.

To provide maximum resolution for sound localization while
minimizing cycle-intensive calculations, the system assumes
the central microphone is placed at (0, 0) and the peripheral
microphones at (0, 1), (−1,−1), and (1,−1). Physically these
coordinates correspond to (0, 0), (0, 3 cm), (−3 cm,−3 cm),
and (3 cm,−3 cm).

This 3 cm distance was chosen to be less than half the wave-
length of the frequency interest to avoid spatial aliasing. In this
case, λ/2 = 5.72 cm because f = 3kHz =⇒ λ = 11.44 cm.

A. I2S Communication

A variant of the I2S protocol was used to receive audio data
from the microphones. In the standard I2S protocol, shown in
Fig. 4, data is written on the falling edge of the serial clock
(SCK). However, the SPH0645LM4H-B writes the data on the
rising edge instead, as shown in Fig. 5.

Fig. 4. Standard I2S timing diagram, adapted from [2]. DATA changes on
the falling edge of the clock.

An I2S controller module was implemented to generate the
serial clock (SCK) and word select (WS) signals. Normally,
WS represents the sample rate of the microphone. However,
I2S assumes a stereo-microphone, while the SPH0645LM4H-
B is a mono-microphone, so our effective sample rate is only
half the WS frequency. The microphones had a maximum
clock frequency of 4.096MHz and an oversampling rate
of 64, so the maximum WS frequency was 64 kHz, which
corresponds to a sampling rate of 32 kHz [1].

The SCK and WS signals were then connected to the four
microphones, along with an I2S receiver module (operating

Fig. 5. SPH0645LM4H-B timing diagram, adapted from [1]. DATA changes
on the rising edge of the clock.

in secondary mode). The I2S receiver was implemented by
following the I2S spec [2], adjusting for the non-standard
protocol.

B. Filtering and Decimation

Human speech typically occurs from between 20Hz to
3 kHz. As such, it was necessary to pass the audio data
through a low-pass finite impulse response (FIR) filter. We
used the Xilinx FIR Compiler IP to perform the filtering and
decimation.

First, a low-pass filter was designed using Matlab’s
filterDesigner tool. Fs (the effective sampling fre-
quency) was set to 32 kHz, Fpass to 3 kHz and Fstop to
6 kHz, which generated a sequence of coefficients between
−1 and 1. Because the Xilinx FIR Compiler IP required
integer coefficients, all coefficients were then divided by the
coefficient with minimum absolute value and rounded to the
nearest integer.

These values were then used in the Xilinx FIR Compiler IP,
which was set to decimation mode with a decimation rate of
8, reducing the sampling frequency to 4 kHz.

C. Increasing Gain

Analysis of the microphone outputs using an oscilloscope
revealed that the dynamic range was much greater than ex-
pected, and the six most significant bits were always 1 during
testing. To increase sensitivity to human speech (for testing
with headphones, localization, and biometrics), the filtered and
decimated audio data was left-shifted by six positions.

D. Signal Windowing

Before passing the filtered and decimated audio data to
the fast Fourier transform (FFT), it was necessary to pass
it through a Hanning window. FFT assumes that an integer
number of periods of a signal is captured (that is, the first
and last captured values are equal), but this is rarely the case
with audio data. Thus, to avoid spectral leakage (frequencies
present in the output that were not in the input), the input data
should be windowed as shown in Fig. 6 [3].

A Hanning Window was chosen, as both ends of the window
touch zero, removing any discontinuities from the original
signal when applied.



Fig. 6. The effects of the Hanning window on a signal. Adapted from [3]

E. Shared FFT

To conserve resources, the sound localization and biometrics
modules shared an FFT instance. A Xilinx FFT LogiCORE™
IP block was used, configured with four channels (one for
each microphone) to operate on 512 samples and output
coefficients in natural order. Because audio data is sampled
so slowly relative to the system clock, the Radix-2 Burst I/O
architecture was used. After processing an audio frame, the
FFT instance would send the 512 × 4 calculated real and
imaginary components frequency downstream.

V. VOICE BIOMETRICS

This module served three main purposes: extracting useful
features from the raw audio, training a voice recognition model
on those features, and using that model to predict whether the
incoming voice matches the owner’s voice.

Due to time and resource constraints, model training did
not happen on the FPGA. Instead, the FPGA would send the
extracted feature vectors over BLE radio to an external laptop
for training, and the laptop would then send the trained model
parameters back to the FPGA.

A. Feature Extraction

MFCCs were the main features used for biometrics in this
project. Modern speech recognition systems commonly use
MFCCs as features [4] because they concisely mimic how
humans perceive pitch and timbre [5].

MFCCs are based on the Mel scale, which relates perceived
pitch to measured frequency. Humans are more sensitive to
low-frequency than high-frequency pitch changes, so Mel
frequencies grow logarithmically with Hertz frequencies. The
conversion from Hertz to Mels is:

M(f) = 1125 ln(1 + f/700)

Likewise, the inverse conversion is:

M−1(m) = 700(exp(m/1125)− 1)

In this project, MFCCs were computed via the following
five-step process [5]:

1) First, the real and imaginary components of the FFT
output are squared and summed. This step yields the
power spectrum of the signal.

2) The power spectrum then passes through a Mel filter-
bank — a set of 32 triangular filters with peaks evenly
spaced in the Mel scale. Fig. 7 shows a Mel filterbank
with only 10 filters.
The 32 filters run in parallel for maximum throughput.
A description of our filter design and implementation is
presented in the Appendix.

3) The output of each filter is accumulated, which yields
32 filterbank energies. Each filterbank energy represents
the loudness of its respective Mel frequency band.

4) The logarithms of the 32 filterbank energies are then
computed in parallel. This step is also motivated by
human hearing, as humans do not hear loudness on a
linear scale [5].
The natural logarithm is normally used here, but we
decided to use the base-2 logarithm instead because
it is simpler to compute and differs from the natural
logarithm by a constant factor. A detailed description of
our implementation is presented in the Appendix.

5) Finally, the discrete cosine transform (DCT) of the log
energies is computed using the Xilinx XFFT IP module.
This step decorrelates the feature vectors’ components,
which is necessary because the triangular filters in the
Mel filterbank overlap.
Only the lower half of the DCT coefficients are kept
after this step to simplify the feature vectors.

Fig. 7. An example Mel filterbank with only 10 triangular filters. Note that
the filters are narrow at low frequencies and wider at higher frequencies.

These five steps were implemented as standalone modules
that communicate with each other over AXI4-Stream.

B. Bluetooth Communication

Each RealDigital Urbana board came equipped with a
Nordic Semiconductor nRF52832 BLE device, which was
used for wireless communication between the FPGA and



external laptop (an M1 MacBook Pro). The BLE device
communicated with the FPGA using a two-wire (RX/TX)
UART protocol, running at a baud rate of 115 200 bps [6].

During testing, it was discovered that the nRF52832 BLE
device required a newline character (hex code 0x0A) to be
sent over UART to flush the output. This condition posed a
few challenges to our design:

• The BLE device can only hold up to 256 bytes of data in
its output buffer, so the FPGA needed to send a newline
character periodically to prevent a crash.
Because the feature extractor used the AXI4-Stream
protocol, a natural solution to this problem was to send
a newline character after sending a feature vector over
BLE. Fig. 8 shows an FSM describing this behavior.
Note that this extra newline character would not be
necessary if the last byte of the feature vector was 0x0A.

• The first byte sent after a newline character could not be
0x0A, or else the BLE device would ignore that byte.
To address this problem, we hard-wired the lowest bit of
each MFCC feature to be 1 and then sent the lower 8 bits
before the upper 8 bits. Although this approach meant
losing one bit of information per feature, it guaranteed
that every byte of information would be intact.

Fig. 8. The FSM controlling how the FPGA sent data over BLE. Note the
need to flush the output after each burst of data.

It is worth noting that the receiving end of the BLE device
mostly did not have these challenges. The only roadblock we
encountered on that end was a data transmission rate limit,
which we addressed by having 0.01 s idle periods between
sending bursts of data from the laptop.

After overcoming these challenges, we were able to use
Bleak [7] (an open-source Python BLE client) to send and
receive hundreds of bytes of data wirelessly between the FPGA
and laptop. Thanks to the low audio sampling rate, we also did
not need to discard any data to accommodate the (relatively
slow) BLE baud rate and MacBook Bluetooth polling rate.

C. Inference

Predicting whether the incoming voice matches the owner’s
voice is a binary classification problem. Although there are
many approaches to binary classification, the fact that training
data consists almost entirely of positive data greatly limits

the set of feasible approaches. Ultimately, we decided to use
the One-Class SVM [8] — an outlier detection algorithm that
has seen use in the literature for sound classification [9]. This
algorithm is designed to train on mostly positive training data
and is also relatively straightforward to implement in hardware
for real-time classification.

One-Class SVM works by learning a decision boundary
(often the minimal bounding hypersphere) around a single
class of data, allowing them to identify whether new data
points deviate from the “normal” class. This decision boundary
is defined by a small set of “support vectors” — a subset of
the input data points lying closest to the boundary.

To classify a data point x, the algorithm computes the
decision function:

f(x) =
∑
i∈S

αiK(xi,x) + b

where S is the set of support vectors, αi are weights between
0 and 1, b is a bias offset, and K is a “kernel function” (an
arbitrary function that computes a scalar from two vectors). If
f(x) > 0, then x is classified as an inlier (that is, the incoming
sound matches the owner’s voice); otherwise, it is classified
as an outlier.

For simplicity, we chose K to be the linear kernel:

K(xi,x) = xi · x

Although higher-dimensional kernels like the popular RBF
kernel KRBF(xi,x) = exp(−||xi − x||2/2) would potentially
have classified data more accurately, we found that the added
complexity was not worth the marginal gains in accuracy.

Another advantage of the linear kernel arose from linearity:

αiK(xi,x) = K(αixi,x)

which meant that instead of storing both αi and xi, the FPGA
only needed to store the scaled coefficients of αixi. This also
allowed the FPGA to save one multiplication operation per
support vector, which led to lower-latency classification.

Model training was implemented using scikit-learn’s
sklearn.svm.OneClassSVM [8]. The model training
pipeline worked as follows:

1) First, a script would connect with the FPGA over BLE,
ingest a stream of extracted feature vectors, and filter
out data below an empirical loudness threshold.
Each feature vector would consist of 16-bit fixed-point
numbers, which would then be rescaled and interpreted
as signed integers.

2) Next, another script would train an SVM model on the
ingested data.

3) Finally, that same script would reconnect with the FPGA
over BLE and stream the model parameters (scaled
support vectors and bias offset) to it.
Each support vector would consist of 16-bit signed
integers, and the bias offset would be a 32-bit signed
integer. Fig. 9 shows how such a stream of data would
be structured.



Fig. 9. The communication protocol over BLE to get model parameters from
the external laptop to the FPGA.

After receiving the model parameters over BLE, the FPGA
would store them in BRAM, with each dimension of the
support vectors having its own dual-port BRAM. We decided
to use 16 BRAMs in parallel here because it allowed us to
compute K(αixi,x) with maximum throughput.

Computing the sum of the dot products was achieved
using a simple counter-controlled loop and accumulator. After
computing this sum, the inference module would compare
it with b and output a binary “detected” signal based on
the result. For extra accuracy, audio inputs below a loudness
threshold were ignored, just like in the model training pipeline.

VI. SOUND LOCALIZATION

This module determines the direction of an audio source
relative to the microphone array. As discussed previously,
four microphones were used — three peripheral microphones
arranged in a triangle around a central microphone. The key
idea behind our approach toward this module is the fact
that there is a small but detectable time difference of arrival
(TDOA) between when each microphone detects a sound. We
used this TDOA to calculate the direction of the source.

A. Filtering frequencies

Of the 512 calculated FFT coefficients, only the lower 256
are usable, by the Nyquist-Shannon sampling theorem. We
further restricted the coefficients to account for the human
speech frequency range. Based on experiments, we decided to
take the 10th to the 226th coefficients — roughly corresponding
to the range 100Hz to 2.65 kHz.

B. Rectangular to Polar Conversion

FFT outputs coefficients in the rectangular form (x, y), but
the polar form (r, ϕ) is needed to calculate the TDOA. As
such, a Xilinx LogiCORE™ CORDIC IP block was used to
convert between the two forms. Four CORDIC modules were
instantiated to convert all four channels in parallel.

Fig. 10. TDATA Structure for Output for CORDIC IP in Translate Mode,
adapted from [12]

The CORDIC module would output a 32-bit value, as
shown in Fig. 10. The most significant 16 bits would be the
phase ϕ, expressed in radians as a 3.13 fixed point two’s
complement number, and the least significant 16 bits would
be the magnitude, expressed as a 2.14 fixed point two’s

complement number. The magnitude is scaled by a constant
factor; however, as the magnitude is not used, this scaling
factor did not matter in this project [12].

C. Direction Calculator

Once converted to polar form, an overall direction was
determined. Cross-correlation is often used for this step and
has been accomplished in 6.2050 before [10]. However, since
we only need the direction and not the distance to the sound
source, we implemented a different algorithm, as outlined
in [13]. The idea is to scale each peripheral microphone’s
location by its delay to get an average location.

This algorithm was accomplished in three steps:
1) First, the phase difference ∆ϕ between each peripheral

microphone and the central microphone is calculated and
constrained to be between π and −π. We know that
the time difference between two signals (of the same
frequency f ) is related to the phase difference by:

∆t =
∆ϕ

2πf

However, since the frequency is the same for all three
microphones this scaling factor can be ignored.

2) Each microphone’s location is then scaled by its phase
difference. As discussed previously, (0, 1), (−1,−1) and
(1,−1) were chosen as microphone locations to avoid
cycle-intensive multiplication in this step.

3) Finally, the x and y components from each scaled
location are summed to give an overall direction vector.

The phase difference calculation and two additions mean the
summed location would be 19 bits (in 6.13 fixed point form),
so the three least significant bits are discarded. Due to the
limited arithmetic operations, this module was implemented
combinationally.

D. Direction Binner

For each frequency, the overall direction vector is put into
one of 16 direction bins, each representing π

8 radians, as shown
in Fig. 11.

Fig. 11. 16 angle bins and their corresponding angles.



First, another CORDIC module translates the direction
vector into polar form. The resulting phase is compared to
predetermined bin values, and the magnitude of the vector is
added to the matching bin.

Once all 216 frequencies have been binned, the maximum
magnitude and its corresponding bin are determined. These
values are provided over AXI4-Stream out of the localizer
module. Finally, the CORDIC IP applies back pressure on the
translate module.

VII. MOTOR CONTROLS

A. Servo Motor Control

To test sound localization, a TowerPro SG92R micro servo
was used. This servo expects a PWM signal with a fixed period
of 20ms and a pulse width from 1ms to 2ms [14] that varies
its position from 0◦ to 180◦, as shown in Fig. 12.

Fig. 12. Servomotor PWM signal, adapted from [14]. Not that the minimum
and maximum duty cycles are somewhere between 0% and 100%.

The servo was powered by an external 5V battery supply
attached to the VS and GND pins on the Urbana board. Each
bin from the localization module was mapped to a specific
duty cycle to make the servo point in the direction of the
sound source.

B. DC Motor Control

Continuous servos were initially used to move the robot.
However, these motors generated enough noise to interfere
with the localization module. Instead, two Adafruit DC Gear-
box TT Motors were used. The higher voltage required to
power these meant a L298N Dual H-Bridge Motor Driver was
also required.

Each motor had three ports: IN1, IN2, and EN. IN1 and
IN2 controlled the direction of the motor and were always
set to low and high respectively, as the motors only moved
clockwise. EN controlled whether the motor is enabled.

A PWM signal was generated for the EN pin to vary
the motor speed. A frequency of 20 kHz was chosen to not
interfere with localization or voice biometrics.

C. Robot Motion Control

This module determined the speed of the left and right motor
based on the bin and magnitude from the localization module,
and whether the biometrics module detected the correct person
talking.

First, the detected bin was stored in a register. If the
newly-detected bin from the localizer module had a magnitude
greater than 5000 (an experimentally determined value), then
the register would be updated. This is done to reduce false
positives from pauses during speech.

If the biometric module did not recognise the person, both
motors would be turned off. If it did recognise the person,
then there were three cases:

1) If the source is in bins 6 to 11 (on the left), then only
the right motor would turn on.

2) If the source is in bins 0 to 2 or 12 to 15 (on the right),
then only the left motor would turn on.

3) If the source is in bins 3 to 5 (in front), then both motors
would turn on.

VIII. ADDITIONAL CAT-LIKE BEHAVIORS

In addition to reacting to audio, the robot can meow and
chase lasers like a real cat. These behaviors were stretch goals
implemented after all other functionality was achieved.

The meowing was achieved using pulse-density modulation
to play a pre-recorded meowing sound effect, sampled at
12 kHz and stored in BRAM.

Laser chasing was achieved by using the camera module
and red chroma-keying to detect whether the robot could see
a red laser dot, and if so, whether the dot was to the robot’s
left or right side. Because we were not displaying the camera
frame, we were able to use a “racing the beam” approach to
perform this calculation. This approach meant that a BRAM
frame buffer (which would have been prohibitively memory-
intensive) was not necessary.

As these additional behaviors were stretch goals, they are
still somewhat limited in scope. Specifically:

• There is only a single, static meowing sound effect that
the robot can produce.

• If the owner’s voice is sufficiently high-pitched, then the
meows may interfere with voice biometrics.

• Laser chasing does not work with non-red lasers or on
brightly-colored terrains.

• The laser dot must be no further than 20 cm away from
the camera.

• We did not have sufficient time to integrate the laser dot
with the physical assembly and motor controls

Furthermore, we did not have enough time to integrate these
behaviors into the main system, but we have verified that they
work independently. We also do not expect the integration to
be complicated.

IX. EVALUATION OF THE SYSTEM

Overall, the system’s performance met our expectations set
at the start of the project. We were able to meet our commit-
ment (real-time audio localization, MFCC feature extraction,
Bluetooth communications, and software-based inference),
accomplish our goals (hardware-based inference and motor
control), and implement two out of our three stretch goals
(image recognition and audio playback). Nonetheless, there
are still a few opportunities for further optimization.



A. Resource Usage

Table I shows the overall resource usage of the system (not
including the contribution from laser dot chasing or meowing).
A significant portion of the DSP blocks used was due to feature
extraction, as each of the 32 triangular filters used a DSP
block to perform multiplication. Given the large amounts of
parallel, real-time digital signal processing performed by the
system, this usage is significantly lower than what we initially
expected.

Resource Raw Usage Percentage Usage

Slice LUTs 9861 30.25%
As logic 8848 27.14%
As memory 1013 10.55%

BRAM 13 17.33%
DSP blocks 81 67.50%

TABLE I
RESOURCE USAGE OF THE PROJECT, AS CALCULATED BY VIVADO.

This relatively low resource usage suggests that we could
use the fully-pipelined FFT IP block (and other more resource-
intensive IP configurations) to lower latency.

We also initially expected the IP used for sound localization
and biometrics to be more memory-intensive, as we had
envisioned (in our block diagram report) using BRAM to store
the results from CORDIC in the sound localizer [16]. However,
we ended up using a four-channel FFT and parallel processing
instead of the BRAM because we had enough DSP blocks left
over for it.

Finally, we were surprised that a single Urbana board had
enough ports to accommodate a camera, four microphones,
two DC motors, and an external speaker. This means that
it would be possible to integrate our stretch goals without
needing extra ports.

B. Latency and Throughput

We used 98.304MHz clock throughout the design as it
cleanly divides the audio sampling frequencies.

We were fortunate to be working with audio data which
at most was being sampled at 64 kHz — much slower than
the the 98.304MHz system clock. As such, most modules
have a latency much less than the period between successive
audio samples. For example, filtering and windowing the audio
incurs a latency of 71.2 ns, which is negligible compared to
the 0.25ms between audio samples.

The localization module used AXI-Streaming to let it apply
back pressure on the FFT. This back pressure ensured that
no data was ever lost. For each FFT, the total latency came
primarily from the two CORDIC calculations downstream.
Each CORDIC had a latency of 20 clock cycles (that is,
203.5 ns). With 216 samples, this gives the localization module
a maximum throughput of 1 per 440µs — again, less than the
delay between audio samples. As such we could localize audio
in real time.

Likewise, the biometrics module worked in real time be-
cause it was fully pipelined.

C. Accuracy

Throughout the project, we tested individual modules with
simulations and groups of modules (for example, UART and
I2S) with end-to-end simulations to ensure accurate transmit-
ting and receiving of data.

We initially tested the localization and biometrics modules
using Manta and LED indicators. Using these, we were able
to detect between the trained voice and another person’s voice.
A limitation of both modules is the presence of false positives,
especially when someone spoke at a similar pitch to the trained
voice. These false positives were expected, based on only
having positive data and how MFCCs work; despite this, the
system was very accurate and had almost no false negatives.

The localization module struggled with pauses while people
were talking due to the speed of the module. Once we imple-
mented volume thresholding, though, it drastically improved
its accuracy.

When fully integrated, the robot successfully identified
its owner’s voice, turned towards them, and navigated to
them. When presented with another person’s voice, it moved
significantly less (often not moving at all). This behavior can
be seen in the video submitted alongside this report.

X. RETROSPECTIVE

This was our first time designing and implementing a large-
scale digital system from scratch, so naturally, the project
involved much experimentation to get things working. Many
of our ideas worked well and made development easier, while
some others created more problems than they solved.

Through this process, we learned the importance of careful
planning, thorough testing, and a willingness to adapt our
approach as needed. These lessons will undoubtedly guide our
decisions as we continue to design new digital systems in the
future.

A. Collaboration and Git

A key driver of success in this project was our highly effec-
tive teamwork and distribution of labor. In the early planning
stages of the project, we designed the system architecture
to be modular and parallelizable. This architecture (with a
dependency graph shown in Fig. 13) maximized throughput
because it ensured that nobody would be blocked by the other
teammate’s incomplete work.

Fig. 13. The dependency graph of the system. Blue indicates modules
implemented by Andi, and orange indicates modules implemented by Richard.



Work was assigned to leverage each team member’s ex-
pertise. Richard had taken 2.007 (Design and Manufacturing)
and 6.3100 (Dynamical System Controls), so he was well-
suited for implementing sound localization and motor controls.
Likewise, Andi had taken 6.3900 (Machine Learning) and
6.1220 (Design and Analysis of Algorithms), so he was well-
suited for implementing biometrics.

As with any project involving shared code, Git was an in-
valuable tool for asynchronous teamwork and version control.
Using separate branches, we were able to work on separate
parts of the project simultaneously without interfering with
each other’s work. The Git history was also very useful for
tracking down breaking changes that had gone unnoticed.

B. General Debugging Techniques

As expected, not everything worked on the first try. Writing
thorough test benches, simulating code using iVerilog, and
inspecting waveforms helped us catch the most egregious bugs
and fix them before attempting to build the code. Although
these test benches undoubtedly saved us from countless hours
of debugging, there were still a few bugs that slipped through
the cracks and required in vivo debugging.

To that end, we relied heavily on Manta [11] — an FPGA
debugging tool that allowed us to capture signals on the FPGA
using Python. In particular, the IO Core was invaluable as it
allowed us to view in realtime the bins the localization was
returning. We attempted to use Manta’s Logic Analyzer Core
at points to get more in-depth waveforms from our modules
but were unsuccessful in this.

On a few occasions (most notably when debugging the
servomotor controls and I2S microphones), we also used an
oscilloscope to inspect the signals the FPGA was generating.
This allowed us to track down why the servomotor wasn’t
initially working (using the board’s 5V port to power the motor
caused the FPGA to crash), and why the microphones initially
were very quiet (the six most significant bits were always 1).

C. Integrating and Testing IP

One of the most time-consuming parts of this project was
integrating and testing IP. Because of all the digital signal
processing done by the FPGA, the project relied heavily on
Xilinx’s IP blocks; in total, it used seven different types of IP.

Although these IP blocks saved us a lot of develop-
ment time by allowing us not to have to create our own
FFT/CORDIC/etc. from scratch, they also introduced a host
of problems that significantly slowed down our development
velocity. In particular:

• The IP blocks (especially XFFT and the FIR compiler)
were slow to compile on Vivado. This slowness meant
that builds would take several minutes to fail, even from
minor syntax errors like forgetting a comma.

• We were unable to simulate the IP locally using iVerilog,
which was very frustrating in the project’s early stages.

• Even when using Vivado to simulate IP, the code would
often crash with a cryptic error message that would take
a few hours to fix.

• Simulations of the IP blocks were slow and took upwards
of an hour to complete in the case of the FIR compiler.

• The documentation was often poorly written and con-
tained contradictory information.

It quickly became clear to us that we had severely underesti-
mated the complexity of using the supposedly “plug-and-play”
IP blocks. Consequently, if we had to redo this project, we
would probably try implementing it without relying as heavily
on IP, or at least build the project in Vivado’s project mode
so that it is easier to test the IP.

Nevertheless, we found the experience of working with IP
to be a valuable learning experience because IP is used in
industry, and the IP blocks we used afforded us much greater
complexity than we likely could have achieved without them.

D. Integrating and Testing Peripherals
We encountered several challenges when integrating periph-

erals like the DC motors. The Urbana board includes four
servomotor connectors, but there is no public documentation
for the Urbana board. We eventually found documentation
for the Boolean board (another RealDigital board), which
specified two ways to power the motors.

Fig. 14. Two ways of powering the servos on the Real Digital Boolean Board,
adapted from [15]

Based on Fig. 14 we initially tried powering the servo from
the board’s 5V supply. Unfortunately, this setup did not work,
even with the micro servos that we were using. While the servo
would move once, it would then crash the FPGA, causing
the flashed program to be lost. Eventually, we realised this
flaw and powered the servo with an external 6V battery pack
instead.

XI. CONCLUSION

Ultimately, the project was a success, and we are proud of
what we have accomplished. Our Feline Programmable Gate
Array successfully identified and moved towards its owner,
even if it did in classic cat fashion — getting distracted
along the way. We are grateful for the tremendous learning
experience this project has bestowed, both in digital system
design and in debugging a large hardware-based project.
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APPENDIX

A. Mel Filterbank Implementation

For maximum , we developed a Python script that uses
parameters like the number of filters to generate code for the
triangular filters in the Mel filterbank. Because each filter’s
bandwidth is so narrow, a lookup table was used instead of
direct multiplication to compute filter amplitudes.

Thanks to this lookup-table approach, each triangular filter
used a single DSP block. Consequently, the entire Mel filter-
bank only used 32 DSP blocks (26.67% of what is available).
We initially anticipated that the Mel filter would use much
more resources, so we were able to be more aggressive with
the other computation-intensive modules.

B. Logarithm Approximation Algorithm

We present an algorithm that leverages the slow growth
of logarithms to approximate log2(x) for arbitrary 32-bit
numbers. Suppose we want to compute log2(2

k +m) where
k ∈ Z and 0 ≤ m < 2k. Consider the first-order Taylor
approximation of log2(x) centered at x = 2k:

log2(x) = log2(2
k) +

x− 2k

2k
+ · · ·

≈ k +
m

2k

This result suggests that log2(x) can be approximated as
a piecewise linear function with breakpoints at powers of 2.
Thus, we get the following algorithm:

1) Compute k by repeatedly shifting x to the left until the
uppermost bit is 1, while counting the number of shifts.

2) Shift x once more to the left, and take the resulting bits
as the fractional part of m/2k.

This algorithm is fast — it only uses bitwise operations
and addition, so it can run in a single clock cycle on our
FPGAs. It is also reasonably accurate — for any k and m, the
approximation differs from the true value by at most 0.086.

C. Computing DCT via FFT

Suppose we want to compute the DCT of some sequence
a1, a2, . . . , an. Although Xilinx does not include a DCT
module as IP in Vivado, the following algorithm adapts an
FFT IP module to compute the DCT:

1) Concatenate the sequence with itself in reverse to get a
sequence a1, a2, . . . , an, an, an−1, . . . , a1 of length 2n.

2) Interdigitate this sequence with zeroes to get a sequence
a1, 0, a2, . . . an, 0, an, . . . , a2, 0, a1, 0 of length 4n.

3) Take the FFT of this sequence and keep only the real
parts of the first n coefficients. These n real numbers
form the DCT of the original sequence.
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